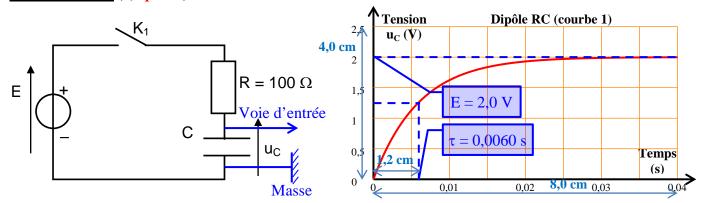
Systèmes électriques (20 points)

1. LE DIPÔLE RC (4,5 points)



- **1.1.** Branchement de la masse M et de la voie d'entrée de la carte d'acquisition (0,5). Le phénomène physique mis en évidence est la charge d'un condensateur sous une tension constante (0,5).
- 1.2. Lorsque le condensateur est chargé, la tension à ses bornes est égale à la force électromotrice E du condensateur car $u_C + u_R = E$. Une fois chargé, le courant est alors nul, donc la tension $u_R = 0$ et $u_C = E = 2,0 \text{ V}(1)$.
- **1.3.** La constante de temps τ de ce circuit a pour expression $\tau = RC$.

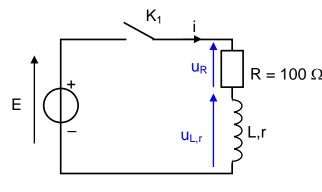
1.3.1.
$$u_C = E.(1 - e^{-\tau/\tau})$$
 donc pour $t = \tau$, $u_C(\tau) = E.(1 - e^{-\tau/\tau}) = E.(1 - e^{-1}) = E.(1 - 0.37) = 0.63 \times E$ (1).

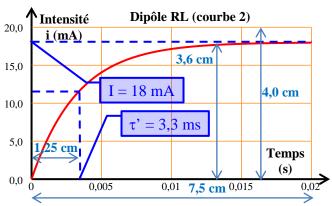
1.3.2. Pour
$$t = \tau$$
, $u_C = 0.63 \times 2.0 = 1.26$ V. Graphiquement cette valeur se trouve à $\frac{4.0 \times 1.26}{2.5} = 2.0$ cm

Graphiquement : $\tau = 0,0060 \text{ s} \left(\frac{1,2 \times 0,04}{8,0}\right) \text{ soit } 6,0 \text{ ms } (0,75).$

$$C = \frac{\tau}{R}$$
. A.N.: $C = \frac{6,0.10^{-3}}{100} = 6,0.10^{-5} F = 60 \ \mu F (0,75)$.

2. <u>LE DIPÔLE RL</u> (10,5 points)





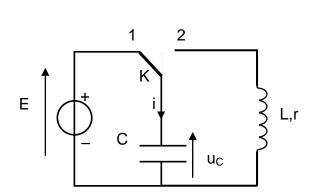
- **2.1.** Le phénomène physique mis en évidence est le retard à l'établissement du courant dans un circuit RL (0,5). L'élément responsable de ce phénomène est la bobine qui emmagasine de l'énergie magnétique (0,5).
- **2.2.** Flécher les tensions sur le montage u_R et $u_{L,r}$ (0,5).
- **2.3.** D'après la loi d'Ohm : $u_R = R.i$ (0,5) et pour la bobine réelle $u_{L,r} = L.\frac{di}{dt} + r.i$ (0,5)
- $\textbf{2.4.} \ \ D'après \ la \ loi \ d'additivit\'e \ des \ tensions : E = u_R + u_{L,r} \ donc \ E = R.i + L.\frac{di}{dt} + r.i = (R+r).i + L.\frac{di}{dt} (\textbf{1}).$
- **2.5.** En régime permanent $\frac{di}{dt} = 0$ et i = I donc E = (R + r).I. Ainsi $I = \frac{E}{R + r}$ (1).

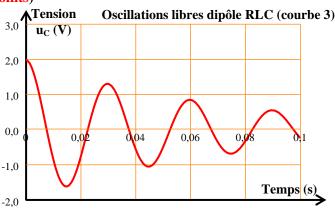
D'après la courbe 2, I = 18 mA $(\frac{3.6}{4.0} \times 20.0 = 18 \text{ mA})$ (0,5)

$$r = \frac{E}{I} - R$$
. A.N.: $r = \frac{2.0}{18.10^{-3}} - 100 = 11 \Omega (1)$.

- **2.6.** $\frac{di}{dt} = \frac{I}{\tau'} \cdot e^{-t/\tau'}$. Ainsi en réinjectant cette expression dans (1): L. $\frac{I}{\tau'} \cdot e^{-t/\tau'} + (R+r) \cdot I \cdot (1-e^{-t/\tau'}) = E$ Soit $(R + r).I + (L.\frac{I}{\tau'} - (R + r).I).e^{-t/\tau'} = E$. Or (R + r).I = E, donc $E + (L.\frac{I}{\tau'} - (R + r).I).e^{-t/\tau'} = E$ soit $(L \cdot \frac{I}{\tau'} - (R + r) \cdot I) \cdot e^{-t/\tau'} = 0$ et par conséquent, pour que cette expression soit vérifiée quel que soit t, il est nécessaire que L. $\frac{I}{\tau}$ – (R + r).I = 0 donc L. $\frac{1}{\tau}$ = R + r et finalement : $\tau' = \frac{L}{R + r}$ (1,5).
- **2.7.** A la date t = 0, i(0) = 0 (0,5). L'équation différentielle s'écrit alors $E = L \cdot \frac{di}{dt}$ à la date t = 0 (0,5). Par conséquent à t=0, $\frac{di}{dt} = \frac{E}{I}$ soit $\frac{di}{dt} = \frac{(R+r) \cdot I}{I} = \frac{I}{r'} (0.5)$.
- **2.8.** Graphiquement : $i(\tau') = 0.63$. $I = 0.63 \times 18 = 11.3$ mA. Soir $\tau' = \frac{1.25}{7.5} \times 0.02 = 3.3$ ms (0.75). L'inductance de la bobine est donc $L = (R + r) \times \tau$ '. A.N. : $L = (100 + 11) \times 3,3.10^{-3} = 0,37 \text{ H} (0,75)$.

LE DIPÔLE RLC EN OSCILLATIONS LIBRES (5 points)





- 3.1. On observe un régime pseudopériodique (0,5) : l'énergie électrique stockée dans le condensateur est transférée à la bobine qui emmagasine de l'énergie magnétique puis la restitue à son tour au condensateur, etc. (0,5). Les oscillations sont libres car aucun générateur n'apporte de l'énergie au système oscillant (K en position 2) (0,5).
- **3.2.** Graphiquement on détermine T = 0.030 s (Par mesure on peut conserver deux chiffres significatifs) (0,5).

Pour un dipôle LC :
$$T_0 = 2\pi . \sqrt{LC}$$
 ainsi $L = \frac{T_0^2}{4 \pi^2 C} . \underline{A.N.} : L = \frac{0.030^2}{4 \pi^2 \times 60.10^{-6}} = 0.38 \text{ H } (0.5).$

Cette valeur est sensiblement la même que la valeur obtenue par la première méthode (0,5).

- 3.3. Pour maintenir constante l'énergie totale d'un oscillateur électrique on utilise un dispositif électronique permettant d'apporter, à chaque instant, l'énergie dissipée par effet Joule dans la résistance équivalente du circuit (montage à amplificateur opérationnel dit à « résistance négative ») (0,5).
- $\begin{aligned} \textbf{3.4.} \ \ La \ tension \ u_C(t) \ a \ pour \ expression \ générale \ u_C(t) &= U_m.cos(\frac{2\pi}{T_0}.t + \Phi_0). \\ \frac{du_C(t)}{dt} &= -U_m.\frac{2\pi}{T_0}.sin(\frac{2\pi}{T_0}.t + \Phi_0) \end{aligned} \qquad et \qquad \qquad \frac{d^2u_C(t)}{dt^2} &= -U_m.\left(\frac{2\pi}{T_0}\right)^2.sin(\frac{2\pi}{T_0}.t + \Phi_0) = -\left(\frac{2\pi}{T_0}\right)^2.u_C(t)$

$$\frac{du_{C}(t)}{dt} = -U_{m} \cdot \frac{2\pi}{T_{0}} \cdot \sin(\frac{2\pi}{T_{0}} \cdot t + \Phi_{0})$$
 et

$$\frac{d^2 u_{\rm C}(t)}{dt^2} = -U_{\rm m} \cdot \left(\frac{2\pi}{T_0}\right)^2 \cdot \sin(\frac{2\pi}{T_0} \cdot t + \Phi_0) = -\left(\frac{2\pi}{T_0}\right)^2 \cdot u_{\rm C}(t)$$

Ainsi d'après l'équation différentielle (2): $-\left(\frac{2\pi}{T_0}\right)^2 \cdot u_C(t) + \frac{1}{LC} \cdot u_C(t) = 0$ et donc $\left(-\left(\frac{2\pi}{T_0}\right)^2 + \frac{1}{LC}\right) \cdot u_C(t) = 0$

Pour que cette équation soit vérifiée quel que soit t, il faut que $\left(-\left(\frac{2\pi}{T_0}\right)^2 + \frac{1}{LC}\right) = 0$, donc $\left(\frac{2\pi}{T_0}\right)^2 = \frac{1}{LC}$ et par suite :

 $\left(\frac{T_0}{2\pi}\right)^2 = LC$ et finalement en ne retenant que la racine positive $(T_0 > 0)$: $T_0 = 2\pi\sqrt{LC}$ (1,5)